近日占据报端的中兴事件已尘埃落定,中兴的教训让我国各大企业感同身受,「研不如买」的理念将成为过去,芯片涉及到的产业安全受到各大企业的高度重视。
与此同时,国内近两年来涌现出一批优秀的智能芯片企业,例如寒武纪、地平线、云知声、深鉴科技、中天微等,也有一些大型企业如华为、阿里等也加入这一领域,这使我国智能芯片领域处于国际第一阵营。但环顾国际,英伟达、谷歌、英特尔、ARM、高通、赛灵思等传统大牌企业在智能芯片领域也同样虎视眈眈。
进入今年以来,各家企业相继推出各自的智能芯片产品,这标志着智能芯片的研发期已过,正逐渐步入产业推广期。尽管各家都还没有量产,但一场市场争夺的战争或正悄然打响。能否夺得市场,或许不仅决定了一个企业的生死存亡,还将决定我国芯片产业是否能实现追赶和突破。
智能芯片的兴起
伴随着人工智能的再次兴起,智能芯片近几年得到了大力发展。
什么是智能芯片?正如「智能」不好定义一样,想给「智能芯片」下一个精确的定义也十分困难。CCAI2018分论坛“智能芯片”主席、中国科学院计算所研究员韩银和认为: 从广义上讲,能够提供特别智能能力的芯片都可以称为智能芯片;而我们当前通常所说的智能芯片,是一类针对人工智能算法进行器件、电路或体系结构定制的芯片,特别是针对深度学习的智能芯片。
GPU 最初是用在个人电脑、工作站、游戏机等设备上进行专用图像计算的微处理器芯片。后来研究人员发现其海量的数据并行计算能力与深度学习的应用特征高度匹配。2011年吴恩达率先将 GPU 应用于谷歌大脑中,取得了惊人效果;结果表明,12颗英伟达的 GPU 可以提供相当于2000 颗 CPU 的深度学习性能。之后,纽约大学、多伦多大学以及瑞士人工智能实验室的研究人员纷纷在 GPU 上加速其深度神经网络。作为 GPU 行业的佼佼者,英伟达也迅速成为人工智能风口的巨无霸,实现一年股票翻6 倍的增长。
而另一方面,伴随着深度学习的兴起,许多学者想到开发深度学习加速器,也即通过硬件实现方式加速神经网络的计算。在 2009 年起, Y. LeCun、O. Temam 等在卷积神经网络加速器设计上开展了一些起步性工作后,2014 年至 2016 年,中科院计算所陈云霁研究团队陆续在计算机体系结构领域顶级会议 ASPLOS、MICRO、ISCA 上发表多篇深度学习加速器方面的论文,点燃了学术界对深度卷积神经网络加速芯片研究的热情。基于这些研究,陈云霁他们研发的 DianNao 芯片取得了 100 倍性能的加速。随后在 2016 年 3 月,北京中科寒武纪科技有限公司注册成立,基于 DianNao 项目技术框架,寒武纪又陆续推出了「寒武纪 1 号」芯片、寒武纪 1A 处理器等产品。其中后者是目前最早量产、出货量最多的 AI 芯片;在 2017 年华为海思的第一款人工智能手机芯片麒麟 970 上就集成了神经网络处理器。目前麒麟 970 已经搭载了在华为 Mate 10、P20、荣耀 V10 这三系列手机产品上,累计出货量已达数千万台。
同期,谷歌也看到了深度学习在实际应用中的巨大潜力。不同于 DianNao 采用的是乘加树体系结构,谷歌所研发的针对数据中心的张量处理器 TPU,采用了脉动阵列的组织方式。脉动阵列 1970 年代由哈佛大学孔祥重教授提出。2016 年 5 月,谷歌在 I/O 大会上首次公布了 第一代TPU,并介绍TPU 正是 AlphaGo 能够击败李世石的「秘密武器」之一。2018 年初,谷歌宣布开放其 TPU 云服务平台,售价 6.5 美元/小时;但基于其商业模式的需求,目前谷歌所研发的 TPU 仅供自己内部使用,并没有售卖芯片的打算。
当然,智能芯片种类繁多。芯片的应用场景不同,其设计也不同。例如谷歌的 TPU 正式根据他们云计算的应用场景而设计的,其功耗较大,但对它来说更重要的则是性能要足够高;再例如华为的麒麟 970 由于要嵌入到手机当中,因此要求功耗低,性能适中;而地平线主要针对无人驾驶设计的芯片则要求针对视觉做一些特殊处理。
从2014年算起,人工智能芯片的研究迄今已有四年。在这一领域,我们国家出现了一批企业,例如寒武纪、地平线、云知声、深鉴科技、中天微等;这些企业也都相继推出了各自适应于场景的智能芯片产品。除了前面介绍的寒武纪,地平线于 2017 年年末发布的「旭日 1.0」和「征程 1.0」则主要面向于智能摄像头和智能驾驶等。所以在这一波智能芯片的浪潮中,我们国家至少现在看来并不落后。
-
免费下载或者VIP会员资源能否直接商用?本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
-
提示下载完但解压或打开不了?最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。
-
找不到素材资源介绍文章里的示例图片?对于会员专享、整站源码、程序插件、网站模板、网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。
-
付款后无法显示下载地址或者无法查看内容?如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理
-
购买该资源后,可以退款吗?源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源